Investigation of dominant hydrogeochemical processes influencing uranium transport in groundwater at a retired explosives test site

K.R. Danny1, M.J. Taffet2, M.L. Brusseau3, J. Chorover1

1Soil, Water and Environmental Science Department, University of Arizona | 2Environmental Restoration Department, Lawrence Livermore National Laboratory

Abstract

The hydrogeological conceptual model and the reactive transport model are preliminary. From the initial geochemical and reactive transport model outputs, the following suggestions can be made about the site.

- The chemistry of the aquifer is governed by characteristic silicate weathering reactions.
- The Aquifer is highly oxidized, implying uranium will likely exist in the more mobile oxidized state.
- The Majority of uranyl ion will complex with carbonate ions.
- Uranium-bearing secondary phases are dominantly undersaturated, except for Swartzite in water in W-812-01 and W-812-02.
- Uranium carbonates will affect the amount of sorption/interaction with a surface.
- Sorption may be dominant process, but refinement of model is needed.

Future Work

Further research includes the following activities and objectives:

- Further evaluation of site-specific data.
- Refinement of advective-dispersive transport model.
- Further evaluation and elimination of attenuation processes.
- Input of different processes into the reactive transport model to determine their relative importance.
- Inverse-modeling to determine additional potential processes.
- Determine actual reactive mineral content in Tnbs/Tnbs rocks (whole rock mineralogy analysis).
- Calibrate model to site data and conduct sensitivity analyses.
- Determine if dual porosity models hydraulics effectively

Acknowledgements

Support has come from the: Alfred P. Sloan Indigenous Graduate Fellowship; Soil, Water, and Environmental Science Department, University of Arizona; Environmental Restoration Department, Lawrence Livermore National Laboratory; Institute for Tribal Environmental Professionals, Northern Arizona University; Department of Energy National Nuclear Security Administration Minority Serving Institutions Program.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Objectives and Methods

Determining the dominant processes influencing uranium transport will be completed by the following objectives.

A. Evaluate 14 years of hydrogeologic/chemical data

<table>
<thead>
<tr>
<th>Monitoring Well</th>
<th>Water Chemistry Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-812-01</td>
<td>Ca = 9.5 mg/L, Mg = 13.1 mg/L, pH = 6.9, U = 0.17 mg/L</td>
</tr>
<tr>
<td>W-812-02</td>
<td>Ca = 9.5 mg/L, Mg = 13.1 mg/L, pH = 6.9, U = 0.17 mg/L</td>
</tr>
<tr>
<td>W-812-03</td>
<td>Ca = 9.5 mg/L, Mg = 13.1 mg/L, pH = 6.9, U = 0.17 mg/L</td>
</tr>
<tr>
<td>W-812-04</td>
<td>Ca = 9.5 mg/L, Mg = 13.1 mg/L, pH = 6.9, U = 0.17 mg/L</td>
</tr>
<tr>
<td>W-812-05</td>
<td>Ca = 9.5 mg/L, Mg = 13.1 mg/L, pH = 6.9, U = 0.17 mg/L</td>
</tr>
</tbody>
</table>

B. Create an hydrogeologic conceptual model of the Tnbs/Tnbs, sandstone aquifer

C. Apply a geochemical and reactive transport model, Geochemist’s Workbench V.10, to identify specific processes, aquifer properties, and site conditions controlling uranium transport.

Results

Aqueous Speciation

- Bicarbonate (HCO\textsubscript{3}) complexes bond strongly with uranyl ions (UO\textsubscript{2}+) in groundwater. Uranium speciation in solution is dominated by uranyl carbonate complexes.

Mineral Saturation Indices

Preliminary Reactive Transport

- Preliminary simulations of 1-D advective reactive transport along a transect from W-812-01 to W-812-09 were conducted with the following parameters:
 - UO\textsubscript{2}+ sorption to HFO modeled after Dzombak and Morel (1990)
 - Diffuse double-layer surface complexation theory
 - Sorption of uranyl carbonates to HFO % Volume of 0.01
 - Retardation factors and distribution coefficients (K\textsubscript{d}) calculated from breakthrough curves of UO\textsubscript{2}+ and a conservative tracer.
 - Various HCO\textsubscript{3} concentrations were used to show effect on sorption

1 Relationships between K\textsubscript{d} (and UO\textsubscript{2}+) sorption decrease with increasing HCO\textsubscript{3} concentration.

Research Questions

1. What are the dominant processes causing the observed attenuation of the depleted uranium?
2. Can a reactive transport model be used to simulate uranium transport in the aquifer?
3. If so, do the simulations indicate system has the ability to attenuate the uranium indefinitely?

Site Description

5 monitoring wells are screened 50-70 feet below ground surface within the Tnbs/Tnbs, sandstone aquifer.

Oblique view of Building 812 site

Support has come from the: Alfred P. Sloan Indigenous Graduate Fellowship; Soil, Water, and Environmental Science Department, University of Arizona; Environmental Restoration Department, Lawrence Livermore National Laboratory; Institute for Tribal Environmental Professionals, Northern Arizona University; Department of Energy National Nuclear Security Administration Minority Serving Institutions Program.

Acknowledgements